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Impact fracture of a three-dimensional cube with quenched disorder
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Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland

~Received 4 January 1999!

Disorder is demonstrated to be a decisive factor that controls the location and the amount of damage caused
by a rapid impact on a three-dimensional elastic solid. For strong disorder, the damage is localized close to the
point of impact, while for weak disorder, constructive interference leads to fracture in the vicinity of the face
opposite to the impact. Dynamical overload seems to hinder the formation of self-affine crack structures.
However, the crack surface becomes more rough as the quasistatic limit is approached.
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In addition to their great technological importance, impa
fracture and fragmentation processes are also interes
from a purely academic point of view. The academic inter
relates to many basic aspects of fracture and fragmenta
not being fully understood, even though such processes
common in everyday life. The difficulties related to dynam
fracture are, as in quasistatic fracture, a consequence o
average properties of a material not being enough to de
mine its failure behavior. Rather, fracture processes are
termined by weaknesses and microcracks~i.e., disorder!
which exist in all natural materials@1#. Fragmentation is usu
ally initiated at such weaknesses, and interaction betw
them and nucleated cracks will influence the dynamic fr
ture process in a highly nontrivial way@2,3#. Attempts to
relate fragmentation and fracture to self-organized critica
and phase transitions have appeared recently@4,5#. There are
also a few more or less simplified models which catch ma
of the features typical of dynamic fracture and fragmentat
@2,3,6–8#. The picture is still far from being complete, how
ever.

In this paper we analyze dynamic fracture by a rapid i
pact of a discrete lattice model of a three-dimensional cu
We shall not quantitatively consider any specific process,
rather consider a numerically efficient model in order to e
tract qualitative effects of statistical disorder in thre
dimensional impact fracture~for reviews of fracture in two
dimensions, see, e.g., Refs.@9, 10#!. Similarly to the finite-
element method, we divide the solid body into discrete
tice sites and bonds. For numerical reasons we have ch
to use a simple cubic lattice. All mass is lumped into t
sites, and a harmonic potential is assumed between ne
neighbor sites. The displacements and accelerations o
sites are computed at discrete time steps. The harmonic
tential in the six-dimensional local phase space~i.e., three
translational and three rotational degrees of freedom for e
site! is taken to be that of a slender, linearly elastic, beam~so
slender that shear deformations are negligible in compar
with bending!. The boundary conditions imposed on the la
tice cube are chosen such that the sites at the bottom fac
the cube (z50) are time dependent:z(t)5A sin2(vt) for 0
<t<p/2v. For t.p/2v, these sites are forced to stay atz
5A. This dependence models the impact. Free bound
conditions are imposed on all other faces of the cube.
time-dependent displacements of all sites other than thos
PRE 591063-651X/99/59~4!/4650~4!/$15.00
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the bottom face are computed using a discrete form of N
ton’s equations of motion including a small linear visco
dissipation term, and starting from the global static equil
rium at t50. The equations of motion are

F M

Dt2 1
C

2Dt GU~ t1Dt !

5F2M

Dt22K GU~ t !2F M

Dt22
C

2Dt GU~ t2Dt !, ~1!

whereM is the diagonal mass matrix,K the stiffness matrix,
C a diagonal damping matrix,U a vector containing the dis
placements from equilibrium of all lattice sites, andDt the
length of the discrete time step. In the simulationsM andC
are both set proportional to the unit matrix, andU(0)5U
(2Dt)50; K is constructed by summing the stiffness mat
ces of all lattice bonds@11#. For maximizing the numerica
efficiency we do not upgradeK as the cube is being de
formed. This means that, in a strict sense, our model is o
correct for infinitesimal displacements. Fracture, being a
cal process, is introduced on the smallest possible scal
the model, i.e., on the scale of a single bond. A lattice bo
will break instantly and irreversibly if its axial elongation o
compression exceeds given threshold values. For simplic
it is not possible to break a bond by bending. Notice, ho
ever, that a global bending of the cube can cause fracture
test the effect of the lattice geometry we used two differ
propagation directions for the compression wave~the @100#
and@111# directions!. The propagation direction is importan
because cracks can only propagate perpendicularly to la
bonds.

Disorder could be introduced in many ways. We ha
chosen to use random distributions for the masses at the
tice sites and for the Young’s moduli of the bonds. T
massesmi ~also the moments of inertia! and the Young’s
moduli Ei are chosen from exponential distributions:mi
5ad i andEi5ag i, whered i andg i are stochastic variable
whose values are uncorrelated and belong to the unif
distribution in the interval@0, 1#. Herea is the ‘‘width’’ of
these distributions. Notice that if damping is negligible, t
averageddynamical properties of the system remain t
4650 ©1999 The American Physical Society
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PRE 59 4651IMPACT FRACTURE OF A THREE-DIMENSIONAL CUBE . . .
same even ifa is changed@cf. Eq. ~1!#. It is only the ampli-
tude of the local fluctuations that would change, i.e., dis
der.

In Fig. 1 we show snapshots taken from one face of
lattice cube~so that it appears two dimensional! at early and
late stages of the fracture processes, and for three diffe
values ofa. In this figure we also display the cracks whic
are formed. In the simulations the following parameters w
used: beam cross sectionv250.25, beam lengthl f51.0, lat-
tice size 20320320, andv5p/40. The compressive frac
ture threshold was 0.25l f , and the tensile fracture thresho
0.05l f . After 500 time steps (Dt50.05) and fora54, a
compression wave is clearly seen. Fora515, and especially
for a5100, severe fragmentation close to the point of imp
can already be observed after 500 time steps. This has ca
a decreased amplitude of the compression wave as el
energy is absorbed by and reflected from nucleating cra
The average maximum displacement of the sites halfw
through the cube was 1.2A for a54, and 0.5A for a5100.
After 2000 time steps the compression wave has alre
traveled back and forth through the cube. In the case w
a54, the first time the wave reaches the opposite face of
cube, a positive interference between the coming and
reflected wave results in fracture close to this face. T
cracks formed fora54 are thus concentrated near the fa
opposite to the impact. Fora515 cracks are formed at bot
ends of the cube, while fora5100 the cracks are concen
trated in the vicinity of the impact. Notice that the values
the tensile and the compressive fracture thresholds are
important. If the compressive fracture threshold is ve
small, many bonds will break before the maximum of t
wave has passed that point. This means that a lot of ela
energy is arrested behind the cracks. If, on the other ha
most bonds are broken by tensile stress, elastic energy pr
gates more easily.

Figure 2 demonstrates, in a more quantitative form,

FIG. 1. Snapshots of three fragmentation processes at 500
2000 time steps (Dt50.05). a54, 15, and 100. The cracks forme
after 2000 time steps are also shown.
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change in the number of broken bonds with the increase
disorder. In this figure we show the number of broken bon
~scaled by a power of the cube sizeL! in the upper and lower
halves of the cube as functions ofa. In the upper half the
number of broken bonds decreases with increasinga, while it
increases in the lower half.

The dimensionality of the cracks formed in the vicinity
the bottom and top faces of the cubes is not clear from Fig
The dimensions of these structures can be obtained by d
simulations on different cube sizes and then collapsing
curves, like the ones in Fig. 2, onto a single curve by scal
the y axis byL2d, whered is the dimension. This has bee
done in Fig. 2. The best result for the lower cracks is giv
by d'2.25, and for the upper cracksd'2.8. If this collaps-
ing of the curves is perfect, it would indicate that the crac
form self-affine structures with the fractal dimensiond. This
is the case for quasistatic fracture@12–15#. However, there
seems to be a weakly decreasing trend ind with increasingL.
This indicates that the structures formed by the cracks are
really scale invariant, and that there may be a crossover
at which the dimensions change. This is indeed the cas
demonstrated by Fig. 3~A! for the upper cracks, and by Fig
3~B! for the lower cracks. The number of broken bonds
the respective halves of the cube are plotted as function
the linear system sizeL for a55, 13, 51, and 200. Figure
3~A! and 3~B! demonstrate that the crack structures are cl
to three dimensional on a small scale, and close to two
mensional on a large scale for both the upper and the lo
cracks. That is, the fracture zones have the structure
plate of finite thickness. Notice also that the crossover po
from three to two dimensions is disorder dependent for
~100! direction, while it seems independent of disorder f
the ~111! direction. The above result is in contrast to what
found for the quasistatic case. In two dimensions the ex
nent 1.7 appears for all types of disorder@12#, unless the
disorder distribution is very narrow. In three dimensions t
exponents 2.25 and 2.9 were reported for weak and str
disorder, respectively, in a cubic fuse lattice with uniform
distributed fracture thresholds@13#. The exponents 2.1 an
2.6 were also reported in three dimensions for slightly d
ferent types of disorder and lattice geometry@14#.

nd

FIG. 2. The number of broken bonds in the upper (Nu) and the
lower (Nl) halves, scaled by a power of the linear size~L! of the
cube, and plotted as functions ofa. Results are shown forL510,
20, 30, and 40.
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To further investigate the dimension of the crack stru
tures, we ‘‘turned the cubes upside down’’ and calculated
roughness~i.e., the variance of the width! of the crack sur-
face after all loose fragments were removed. This was d
for a54 and 100 andA50.65 and 1.0. We found that ther
is hardly any variation in the surface roughness as the siz

FIG. 4. The roughness of the top surfaces of the cubes
function of their sizeL. Results are shown fora54 and 100, and
for compression wave amplitudes 0.65 and 1.3.

FIG. 3. The number of broken bonds in~A! the upper half of the
cube, and~B! the lower half of the cube, plotted as functions ofL.
Results are shown for both the~100! and ~111! directions, and for
a55, 13, 51, and 200. The full lines are functions proportional
L3.0 andL2.0.
-
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the cube is changed~Fig. 4!. This further supports the abov
suggestion that crack structures are simply two dimensio
on a large scale.~Only for a5100 andA50.65 is there some
indication that roughness increases with the sizeL.!

It is generally accepted that the self-affine crack structu
in the quasistatic limit are created as a result of an interp
between quenched disorder trying to delocalize the fract
and stress enhancement trying to localize the fracture. St
enhancement is weaker in three dimensions than in t
which means that disorder more easily dominates over cr
propagation, and a fairly large amount of bonds will be b
ken before crack propagation appears. This is especially
for a high amplitude of the compression wave. Then a la
number of bonds are broken rapidly before the stress
hancement field at the crack tips has time to form. Disor
dominated fracture means that broken bonds are evenly
tributed over a volume. It is, thus, not very suprising that t
fracture structures are three dimensional on small scale
Fig. 3. Notice that the ‘‘fracture structures’’ of Fig. 3 are n
the ‘‘backbone’’ of the cracks, but that all broken bonds a
counted. The backbone may still have a fractal dimens
@16#, at least on small scales. For the backbone to be fra
on large scales, however, the amount of broken bonds wo

a

FIG. 5. ~a! The roughness of the crack surface of the cubes a
function of the amplitude of the compression wave.~b! The rough-
ness of the crack surface of the cubes as a function of the w
length of the compression wave (a54 and 100!.
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PRE 59 4653IMPACT FRACTURE OF A THREE-DIMENSIONAL CUBE . . .
have to be right at the point where cracks percolate, whic
generally not the case for dynamic fracture. In a quasist
case, fracture will cease the moment cracks percolate
cube, while, in a dynamic case, fracture will continue b
cause of the kinetic energy. This effect is particulary stro
for high amplitude impacts.

On a large scale, however, the fracture structures of Fi
have a limited depth in thez direction. An examination of
the simulations gave the following explanation for this. A
already mentioned an important effect is that elastic ene
is reflected and absorbed by cracks. If the amplitude of
compressive wave is, at some moment in time, high eno
to instantly create extensive damage in a plane perpendic
to the propagation direction of the wave, the amplitude of
compression wave will decrease drastically. If the amplitu
then becomes sufficiently low, no more cracks will
formed. This is what happens close to the bottom face of
cube for a5100, and close to the opposite face fora54.
Consequently, the fracture structures will have a limit
depth in the propagation direction of the wave. In the ot
two directions there are no such limiting effects. The fract
structures will thus be two dimensional on a large scale. T
effect is, of course, only valid at high loads~overload!, for
which extensive damage is rapidly formed close to the b
tom or top faces of the cube. Right at the ‘‘critical’’ ampl
tude, at which fracture is just about initiated, the situat
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may be different. For dynamic fracture this critical amplitu
is reminiscent in a way of quasistatic fracture, as only a f
cracks will be initiated, which allows extensive crack prop
gation to appear. This results in an increasing roughness
decreasing amplitude of the compression wave@Fig. 5~a!#.
Another way to approach the quasistatic limit is to increa
the wavelength of the compressive wave. As demonstrate
Fig. 5~b!, a longer wavelength means a higher surface rou
ness, which indicates a crossover to rough surfaces for q
sistatic fracture. We also tried to find a power-law depe
dence of roughness on the size of the cube for the low
possible amplitudes and the longest possible waveleng
but this proved to be difficult. No better dependence th
what is found in Fig. 4 fora50.65 andA5100 could be
found.

In summary, we have used a discrete numerical mode
demonstrate that disorder controls the amount and loca
of damage resulting from an impact on a three-dimensio
cube. For weak disorder, damage is mainly caused by c
structive interference near the face opposite to the imp
while localization is the main mechanism that limits dama
close to the impact for strong disorder. The crack structu
formed in both these limits are three dimensional on a sm
scale and two dimensional on a large scale. As the quasis
limit is approached the crack surface becomes more rou
which indicates a crossover to a self-affine surface.
ent
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