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Impact fracture of a three-dimensional cube with quenched disorder
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Disorder is demonstrated to be a decisive factor that controls the location and the amount of damage caused
by a rapid impact on a three-dimensional elastic solid. For strong disorder, the damage is localized close to the
point of impact, while for weak disorder, constructive interference leads to fracture in the vicinity of the face
opposite to the impact. Dynamical overload seems to hinder the formation of self-affine crack structures.
However, the crack surface becomes more rough as the quasistatic limit is approached.
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In addition to their great technological importance, impactthe bottom face are computed using a discrete form of New-
fracture and fragmentation processes are also interestirign’s equations of motion including a small linear viscous
from a purely academic point of view. The academic interestlissipation term, and starting from the global static equilib-
relates to many basic aspects of fracture and fragmentatioiium att=0. The equations of motion are
not being fully understood, even though such processes are
common in everyday life. The difficulties related to dynamic
fracture are, as in quasistatic fracture, a consequence of the ﬂ+ c U(t+At)
average properties of a material not being enough to deter- At? 7 2At
mine its failure behavior. Rather, fracture processes are de-
termined by weaknesses and microcradks., disorder
which exist in all natural materia[d]. Fragmentation is usu-
ally initiated at such weaknesses, and interaction between
them and nucleated cracks will influence the dynamic frac-
ture process in a highly nontrivial waj2,3]. Attempts to  whereM is the diagonal mass matrik, the stiffness matrix,
relate fragmentation and fracture to self-organized criticalityC a diagonal damping matrix) a vector containing the dis-
and phase transitions have appeared rec¢diBl. There are  placements from equilibrium of all lattice sites, aad the
also a few more or less simplified models which catch manyength of the discrete time step. In the simulatidthsand C
of the features typical of dynamic fracture and fragmentatiorare both set proportional to the unit matrix, abg0)=U
[2,3,6—8. The picture is still far from being complete, how- (—At)=0; K is constructed by summing the stiffness matri-
ever. ces of all lattice bond§11]. For maximizing the numerical

In this paper we analyze dynamic fracture by a rapid im-efficiency we do not upgrad& as the cube is being de-
pact of a discrete lattice model of a three-dimensional cubeormed. This means that, in a strict sense, our model is only
We shall not quantitatively consider any specific process, butorrect for infinitesimal displacements. Fracture, being a lo-
rather consider a numerically efficient model in order to ex-cal process, is introduced on the smallest possible scale in
tract qualitative effects of statistical disorder in three-the model, i.e., on the scale of a single bond. A lattice bond
dimensional impact fracturor reviews of fracture in two  will break instantly and irreversibly if its axial elongation or
dimensions, see, e.g., Refs, 10]). Similarly to the finite- compression exceeds given threshold values. For simplicity,
element method, we divide the solid body into discrete latit is not possible to break a bond by bending. Notice, how-
tice sites and bonds. For numerical reasons we have chosener, that a global bending of the cube can cause fracture. To
to use a simple cubic lattice. All mass is lumped into thetest the effect of the lattice geometry we used two different
sites, and a harmonic potential is assumed between neargsbpagation directions for the compression wédthe [100]
neighbor sites. The displacements and accelerations of aind[111] directiong. The propagation direction is important
sites are computed at discrete time steps. The harmonic pbecause cracks can only propagate perpendicularly to lattice
tential in the six-dimensional local phase spdce., three  bonds.
translational and three rotational degrees of freedom for each Disorder could be introduced in many ways. We have
site) is taken to be that of a slender, linearly elastic, bédam  chosen to use random distributions for the masses at the lat-
slender that shear deformations are negligible in comparisotice sites and for the Young’s moduli of the bonds. The
with bending. The boundary conditions imposed on the lat-massean; (also the moments of inerjisand the Young's
tice cube are chosen such that the sites at the bottom face ofoduli E; are chosen from exponential distributions:
the cube £=0) are time dependent(t) =A sin’(wt) for 0 =a’% andE;=a”, whered; and y; are stochastic variables
<ts7/2w. Fort>n/2w, these sites are forced to stayzat whose values are uncorrelated and belong to the uniform
=A. This dependence models the impact. Free boundarglistribution in the intervalO, 1]. Herea is the “width” of
conditions are imposed on all other faces of the cube. Ththese distributions. Notice that if damping is negligible, the
time-dependent displacements of all sites other than those averageddynamical properties of the system remain the
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FIG. 1. Snapshots of three fragmentation processes at 500 ar%'sorder' In this figure we show the.number of broken bonds
2000 time stepsAt=0.05).a=4, 15, and 100. The cracks formed (scaled by a power of the cube sizpin the upper and lower

after 2000 time steps are also shown. halves of the cube as functions af In' thg upper hajf t.he
number of broken bonds decreases with increaajnghile it

same even ifi is changedcf. Eq. (1)]. It is only the ampli- increases in the lower half.

tude of the local fluctuations that would change, i.e., disor- The dimensionality of the cracks formed in the vicinity of

der. the bottom and top faces of the cubes is not clear from Fig. 1.

In Fig. 1 we show snapshots taken from one face of théfhe dimensions of these structures can be obtained by doing
lattice cube(so that it appears two dimensiopat early and  simulations on different cube sizes and then collapsing the
late stages of the fracture processes, and for three differegurves, like the ones in Fig. 2, onto a single curve by scaling
values ofa. In this figure we also display the cracks which they axis byL ¢, whereé is the dimension. This has been
are formed. In the simulations the following parameters werg&lone in Fig. 2. The best result for the lower cracks is given
used: beam cross sectiarf=0.25, beam length=1.0, lat- by §~2.25, and for the upper cracks=2.8. If this collaps-
tice size 2k 20X 20, andw = 7/40. The compressive frac- ing of the curves is perfect, it would indicate that the cracks
ture threshold was 0.2p, and the tensile fracture threshold form self-affine structures with the fractal dimensiénThis
0.09¢. After 500 time steps At=0.05) and fora=4, a is the case for quasistatic fracture2—15. However, there
compression wave is clearly seen. feor 15, and especially seems to be a weakly decreasing trend with increasing-.
for a=100, severe fragmentation close to the point of impacfThis indicates that the structures formed by the cracks are not
can already be observed after 500 time steps. This has causeshlly scale invariant, and that there may be a crossover size
a decreased amplitude of the compression wave as elastt which the dimensions change. This is indeed the case as
energy is absorbed by and reflected from nucleating crackslemonstrated by Fig.(8) for the upper cracks, and by Fig.
The average maximum displacement of the sites halfway(B) for the lower cracks. The number of broken bonds in
through the cube was 1A2for a=4, and 0.3 for a=100. the respective halves of the cube are plotted as functions of
After 2000 time steps the compression wave has alreadihe linear system sizk for a=5, 13, 51, and 200. Figures
traveled back and forth through the cube. In the case wheB(A) and 3B) demonstrate that the crack structures are close
a=4, the first time the wave reaches the opposite face of thto three dimensional on a small scale, and close to two di-
cube, a positive interference between the coming and thmensional on a large scale for both the upper and the lower
reflected wave results in fracture close to this face. Theracks. That is, the fracture zones have the structure of a
cracks formed fom=4 are thus concentrated near the faceplate of finite thickness. Notice also that the crossover point
opposite to the impact. Fa@= 15 cracks are formed at both from three to two dimensions is disorder dependent for the
ends of the cube, while foa=100 the cracks are concen- (100 direction, while it seems independent of disorder for
trated in the vicinity of the impact. Notice that the values ofthe (111) direction. The above result is in contrast to what is
the tensile and the compressive fracture thresholds are vefgund for the quasistatic case. In two dimensions the expo-
important. If the compressive fracture threshold is verynent 1.7 appears for all types of disordd2], unless the
small, many bonds will break before the maximum of thedisorder distribution is very narrow. In three dimensions the
wave has passed that point. This means that a lot of elastexponents 2.25 and 2.9 were reported for weak and strong
energy is arrested behind the cracks. If, on the other handlisorder, respectively, in a cubic fuse lattice with uniformly
most bonds are broken by tensile stress, elastic energy propaistributed fracture threshold4.3]. The exponents 2.1 and
gates more easily. 2.6 were also reported in three dimensions for slightly dif-

Figure 2 demonstrates, in a more quantitative form, thderent types of disorder and lattice geomdtiyi].
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cube, andB) the lower half of the cube, plotted as functionsLof
Results are shown for both tlH&00) and (111) directions, and for
a=>5, 13, 51, and 200. The full lines are functions proportional to

L3%andL?®

FIG. 5. (a) The roughness of the crack surface of the cubes as a
function of the amplitude of the compression wafl®. The rough-
ness of the crack surface of the cubes as a function of the wave-

To further investigate the dimension of the crack struc-ength of the compression wava< 4 and 100.

tures, we “turned the cubes upside down” and calculated the
roughnesgi.e., the variance of the wid}tof the crack sur-  the cube is change@Fig. 4). This further supports the above

face after all loose fragments were removed. This was dongyggestion that crack structures are simply two dimensional
fora=4 and 100 andh=0.65 and 1.0. We found that there g, 3 |arge scaldOnly for a= 100 andA=0.65 is there some

is hardly any variation in the surface roughness as the size gfgjication that roughness increases with the &ize
It is generally accepted that the self-affine crack structures

12 in the quasistatic limit are created as a result of an interplay
between quenched disorder trying to delocalize the fracture,
LY (= SN - g & 1 and stress enhancement trying to localize the fracture. Stress
e . enhancement is weaker in three dimensions than in two,
08} & which means that disorder more easily dominates over crack
propagation, and a fairly large amount of bonds will be bro-
~ 06} ken before crack propagation appears. This is especially true
for a high amplitude of the compression wave. Then a large
0.4l number of bonds are broken rapidly before the stress en-
hancement field at the crack tips has time to form. Disorder
ozl dominated fracture means that broken bonds are evenly dis-
tributed over a volume. It is, thus, not very suprising that the
0 . . ) . . . fracture structures are three dimensional on small scales in
20 30 40 50 60 70 80 90 Fig. 3. Notice that the “fracture structures” of Fig. 3 are not

L the “backbone” of the cracks, but that all broken bonds are

FIG. 4. The roughness of the top surfaces of the cubes as @ounted. The backbone may still have a fractal dimension
function of their sizel. Results are shown fa=4 and 100, and [16], at least on small scales. For the backbone to be fractal
for compression wave amplitudes 0.65 and 1.3. on large scales, however, the amount of broken bonds would
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have to be right at the point where cracks percolate, which isnay be different. For dynamic fracture this critical amplitude
generally not the case for dynamic fracture. In a quasistatits reminiscent in a way of quasistatic fracture, as only a few
case, fracture will cease the moment cracks percolate theracks will be initiated, which allows extensive crack propa-
cube, while, in a dynamic case, fracture will continue be-gation to appear. This results in an increasing roughness with
cause of the kinetic energy. This effect is particulary strongdecreasing amplitude of the compression wvig. 5a)].
for high amplitude impacts. Another way to approach the quasistatic limit is to increase
On a large scale, however, the fracture structures of Fig. &he wavelength of the compressive wave. As demonstrated in
have a limited depth in the direction. An examination of Fig. 5b), a longer wavelength means a higher surface rough-
the simulations gave the following explanation for this. Asness, which indicates a crossover to rough surfaces for qua-
already mentioned an important effect is that elastic energgistatic fracture. We also tried to find a power-law depen-
is reflected and absorbed by cracks. If the amplitude of thelence of roughness on the size of the cube for the lowest
compressive wave is, at some moment in time, high enougpossible amplitudes and the longest possible wavelengths,
to instantly create extensive damage in a plane perpendiculéut this proved to be difficult. No better dependence than
to the propagation direction of the wave, the amplitude of thavhat is found in Fig. 4 fora=0.65 andA=100 could be
compression wave will decrease drastically. If the amplitude€ound.
then becomes sufficiently low, no more cracks will be In summary, we have used a discrete numerical model to
formed. This is what happens close to the bottom face of theemonstrate that disorder controls the amount and location
cube fora=100, and close to the opposite face for=4.  of damage resulting from an impact on a three-dimensional
Consequently, the fracture structures will have a limitedcube. For weak disorder, damage is mainly caused by con-
depth in the propagation direction of the wave. In the othestructive interference near the face opposite to the impact,
two directions there are no such limiting effects. The fracturewhile localization is the main mechanism that limits damage
structures will thus be two dimensional on a large scale. Thiglose to the impact for strong disorder. The crack structures
effect is, of course, only valid at high loadsverload, for ~ formed in both these limits are three dimensional on a small
which extensive damage is rapidly formed close to the botscale and two dimensional on a large scale. As the quasistatic
tom or top faces of the cube. Right at the “critical” ampli- limit is approached the crack surface becomes more rough,
tude, at which fracture is just about initiated, the situationwhich indicates a crossover to a self-affine surface.
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